Sparse representation-based classification: Orthogonal least squares or orthogonal matching pursuit?

نویسندگان

  • Minshan Cui
  • Saurabh Prasad
چکیده

Spare representation of signals has received significant attention in recent years. Based on these developments, a sparse representation-based classification (SRC) has been proposed for a variety of classification and related tasks, including face recognition. Recently, a class dependent variant of SRC was proposed to overcome the limitations of SRC for remote sensing image classification. Traditionally, greedy pursuit based method such as orthogonal matching pursuit (OMP) are used for sparse coefficient recovery due to their simplicity as well as low time-complexity. However, orthogonal least square (OLS) has not yet been widely used in classifiers that exploit the sparse representation properties of data. Since OLS produces lower signal reconstruction error than OMP under similar conditions, we hypothesize that more accurate signal estimation will further improve the classification performance of classifiers that exploiting the sparsity of data. In this paper, we present a classification method based on OLS, which implements OLS in a classwise manner to perform the classification. We also develop and present its kernelized variant to handle nonlinearly separable data. Based on two real-world benchmarking hyperspectral datasets, we demonstrate that class dependent ar X iv :1 60 7. 04 94 2v 1 [ cs .C V ] 1 8 Ju l 2 01 6 OLS based methods outperform several baseline methods including traditional SRC and the support vector machine classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Nearest Neighbors

Representing data as a linear combination of a set of selected known samples is of interest for various machine learning applications such as dimensionality reduction or classification. k-Nearest Neighbors (kNN) and its variants are still among the best-known and most often used techniques. Some popular richer representations are Sparse Representation (SR) based on solving an l1-regularized lea...

متن کامل

On the Difference Between Orthogonal Matching Pursuit and Orthogonal Least Squares

Greedy algorithms are often used to solve underdetermined inverse problems when the solution is constrained to be sparse, i.e. the solution is only expected to have a relatively small number of non-zero elements. Two different algorithms have been suggested to solve such problems in the signal processing and control community, orthogonal Matching Pursuit and orthogonal Least Squares respectivel...

متن کامل

Underdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning

Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and estimation performance be...

متن کامل

Coherence-based Partial Exact Recovery Condition for OMP/OLS

We address the exact recovery of the support of a k-sparse vector with Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS) in a noiseless setting. We consider the scenario where OMP/OLS have selected good atoms during the first l iterations (l < k) and derive a new sufficient and worst-case necessary condition for their success in k steps. Our result is based on the coherence μ...

متن کامل

An Online Kernel Learning Algorithm based on Orthogonal Matching Pursuit

Matching pursuit algorithms learn a function that is weighted sum of basis functions, by sequentially appending functions to an initially empty basis, to approximate a target function in the least-squares sense. Experimental result shows that it is an effective method, but the drawbacks are that this algorithm is not appropriate to online learning or estimating the strongly nonlinear functions....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2016